
Cabernet User Manual Contents

Cabernet (Computer Aided software engineering environment Based on ER NETs) is an
environment that supports the specification of real time systems.    It is based on ER nets, Petri
nets augmented with data, functionalities and time.    It provides basic functionalities for editing
and storing ER nets.    It includes facilities for validating the specifications, in particular for
executing, simulating, and animating the sepcifications an for formally proving temporal
properties.    Additional facilities allows formal refinement of ER nets and customization of the
set of functionalities provided by the environment.

Menu

Acknowledgments
Introduction         
Getting started                                  Installing and first approach to Cabernet.                   
Background Background information
General General information on Cabernet
Editor The graphical editor
Executor Executing, simulating and animating nets
Analyzer Tool for formally proving net temporal    properties.
Hierarchy Manager The hierarchical decomposition facilities
Customization of facilities How to combine existing facilities to satisfy user's needs
Tool generator elementary tools Basic tools provided by Cabernet.
Bibliography               

 Acknowledgements

Cabernet was developed at CEFRIEL and Politecnico di Milano by a group of    researchers and
graduate students coordinated by Mauro Pezze.

Major contributions and strong support to the Cabernet project have been given by Carlo Ghezzi,
Miguel Felder and Carlo Bellettini.

Software production managed by Miguel Felder and Carlo Bellettini.

Implementation: Marco Braga, Paolo Brunasti, Paola Cherubini, Istok Fekinja, Stefano Gangai,
Fabio Lameri, Marco Piantanida, Joze Strucl, Serena Manca, Roberto Palmer, Marco Piantanida,
Kim Portman, Michel Sfondrini, Roberto Zambetti and Marco Zoccolante

Windows version: Mauro Cavagna, Luca Del Bon and Claudio Valoti

Manual: Sergio Silva

 Bibliography

[BFP93]
C. Bellettini, M. Felder and M. Pezze'. Merlot: A tool for analysis of    real-time specifications. In
Proceedings of the 7th International    Workshop on Software Specification and Design,
Redondo Beach (CA), December    1993.

 [FGP93]
M. Felder, C. Ghezzi and M. Pezze'. Analyzing refinements of state based specifications: the case
of TB nets. In Proceedings of International Symposium on Software Testing and Analysis,
Boston (MA), June 1993.

 [GMMP91]
C. Ghezzi, D. Mandrioli, S. Morasca and M. Pezze'. A unified high level Petri net formalism for
time-chritical systems. IEEE Transactions on Software Engineering, 17(2), February 1991.

 [GMP94]
C. Ghezzi, S. Morasca and M. Pezze'. Timing analysis of time basic nets.
Journal of systems and software, To appear 1994.

 [GP93]
C. Ghezzi, M. Pezze'. Towards extensible graphical formalism. In Proceedings of International
Symposium on Software Testing and Analysis, Boston (MA), June 1993.

[Mur89]
T. Murata. Petri nets: properties, analysis and applications. In Proceedings of IEEE, Vol. 77,
April 1989.

 [PG92]
M. Pezze', C. Ghezzi. Cabernet: an environment for the specification and verification of real-
time systems. In Proceedings of 1992 DECUS Europe Symposium}, Cannes (F), September
1992.

[Pez94]
M. Pezze'. Cabernet: a customizable environment for the specification and verification of real-

time systems. submitted for publication. 1994.

[Str92]
Stroustrup, Bjarne. The C++ programming language. Addisson-Wesley, 1992.

_

Tool generator elementary tools

In the following list, input parameters are indicated by :I and output by :O. Parameters types are:

 Net: Any net.
 Set: Set of objects.
 KString: String.
 TimedEnabling: Time enabling.
 TimedNet: Net with time properties.
 NKobject: Any Cabernet object.
 Transition: Transition node.
 Place: Place node.
 Arc: Arc nodes.

Menu

General tools
Sets
Getting properties
Displaying objects
Writing messages
Identifying enablings
Predicates

General tools

    evaluatePredicates(Net:I,Set:I,Set:O)
 Verifies the predicates on the input tuples (Set:I) and returns the effective enabling tuples in
Set:O.

    chooseEnabling(Set:I,TimedEnabling:O,KString:I,TimedNet:I)
Chooses a transition TimedEnabling from the firable ones (Set).
SetKString indicates the choosing mode (Execution options). Note that this works for timed nets
as indicated by the last input parameter TimedNet.

chooseFiring (TimedNet:I,TimedEnabling:I,KString:I,KString:I,KString:I,KString:O)
Returns a firing time in KString. Input parameters are, the timed net TimedNet, timed enablings
in TimedEnabling and in that order: current time, next deadline (minimum of maximum firing
times) and choosingmode (Execution options), each in a KString.

executeAction(TimedNet:I,TimedEnabling:I,TimedEnabling:O,KString:I)     
Given a TimedNet, a TimedEnabling:I and a firing time in KString, Evaluates the action of the
chosen transition, produced tokens are left in TimedEnabling:O

fire (TimedNet:I,TimedEnabling:I,TimedEnabling:I,KString:I,KString:I,TimedNet:O)
Updates the input net TimedNet:I to the state it must have after firing the chosen transition, the
updated net is left in TimedNet:O. Other input parameters are: chosen enabling and tokens to
produce after the firing, each in a TimedEnabling; current and firing times, each in a KString.

Note that to execute the firing, it is necesary to know the produced tokens. i.e. prior to its
execution, it is necesary to execute the executeAction tool.

getNet(Net:O)
Presents a dialog box similar to the one used in the File menu (File)to select a file to be loaded
into net Net.

loadNet(KString:I,Net:O)
Loads a net which name is given in KString into the net Net.

duplicate(NKobject:I,NKobject:O)
Given any object creates a copy of it.

inc(KString:I)
Increments the value of the input, which must be a string representing a numeric value.

decr(KString:I)
Decrements the value of the input, which must be a string representing a numeric value.

Sets

getFromSet(Set:I,NKobject:O)
Extracts an object which is left in NKobject from a given set set. After the operation the set is
the same but without the extracted element. The extracted object is the last added object.

addToSet(Set:I,NKobject:I,Set:O)
Given an input set and an object, creates an new set into NKobject:O which is the result of
including the object in the original set.

removeFromSet(Set:I,NKobject:I,Set:O)
Given a set Set:I and an object NKobject, generates another set in Set:O which is the set
relusting from extracting the specified object from the given set.

unione(Set:I,Set:I,Set:O)
Performs the union of the two input sets into Set:O

intersect(Set:I,Set:I,Set:O)
Puts into Set:O the intersection of the two input sets.

Getting properties

getCurrentTime(TimedNet:I,KString:O)
Given a timed net, returns its current time value in a KString.

getPresetTokens(Net:I,Transition:I,Set:O)
Given a net (Net) and a transition (Transition) in that net, builds a set (Set) with the tokens of
the preset places.

getTokens(Place:I,Set:O)
Builds a set Set with the tokens of the input place Place.

getPresetPlaces(Transition:I,Net:I,Set:O)
Given a net Net and a transition Transition in it, builds a set Set with the places in the preset of
the transition.

getPostsetPlaces(Transition:I,Net:I,Set:O)
Given a net Net and a transition Transition in it, builds a set Set with the places in the postset of
the transition.

getEnabledTransition(TimedEnabling:I,Transition:O)
Given an enabling TimedEnabling, leaves the transition in it into Transition.

getTransitions(Net:I,Set:O)
Given a net Net, builds a set Set with its transitions.

getPlaces(Net:I,Set:O)
Given a net Net, builds a set Set with its places.

getType(Place:I,KString:O)
Given a place Place, returns its type in KString.

getName(Name:I,KString:O)
Given an element Name it returns its name as a string in KString.

getAction(Transition:I,KString:O)
Lets in KString the action string of the input transition Transition.

getPredicate(Transition:I,KString:O)
Leaves in KString the predicate string of the input transition Transition.

getValue(Token:I,NKobject:O)
Given a token in Token, leaves its value in NKobject

Displaying objects

displayNet(Net:I)
Dsiplays the given net Net on the screen.

draw(Net:I,KString:I)
Draws the given net Net on the screen using the color specified in KString. Color must be a
number between 0 and 9, according to the colors selected by the user (Colors).

drawAndSetColorNet(Net:I,KString:I)
Draws the given net Net on the screen using the color specified in KString and sets this as the
foreground color. Color must be a number between 0 and 9, according to the colors selected by
the user (Colors).

displayNodes(Net:I,Set:I)
Given a set of nodes Set in the net Net displays them on the screen.

deleteNodes(Net:I,Set:I)
Given a set of nodes Set in the net Net hides them on the screen, i.e. nodes are visually deleted.

deleteTokens(Net:I,Set:I)
Given a set of places Set in the net Net, deletes the tokens from them. This is an effective
deletion, not only visual.

displayTransition(Net:I,Transition:I,KString:I)
Given a transition Transition in the net Net and a color KString, draws the transition using the
specified color. Color must be a number between 0 and 9, according to the colors selected by the
user (Colors).

drawTrans(Net:I,Transition:I,KString:I)
Given a transition Transition in the net Net and a color KString, draws the transition using the
specified color using the shape numbered as 4 in the user symbols table (Symbols). Color must
be a number between 0 and 9, according to the colors selected by the user (Colors).

clearTrans(Net:I,Transition:I)

Given a transition Transition in the net Net, draws the transition using the shape numbered as 1
in the user symbols table (Symbols).

highlightTrans(Net:I,Transition:I,KString:I)
Changes color of a transition Transition in the net Net to the indicated color KString. On screen
refresh, transition color returns to the foreground color. Color must be a number between 0 and
9, according to the colors selected by the user (Colors).

displayPlace(Net:I,Place:I,KString:I)
Given a place Place in the net Net and a color KString, draws the place using the specified
color. Color must be a number between 0 and 9, according to the colors selected by the user
(Colors).

highlightPlace(Net:I,Place:I,KString:I)
Changes color of a place Place in the net Net to the indicated color KString. On screen refresh,
place color returns to the foreground color. Color must be a number between 0 and 9, according
to the colors selected by the user (Colors).

displayArc(Net:I,Arc:I,KString:I)
Given an arc Arc in the net Net and a color KString, draws the arc using the specified color.
Color must be a number between 0 and 9, according to the colors selected by the user (Colors).

highlightArc(Net:I,Arc:I,KString:I)
Changes color of an arc Arc in the net Net to the indicated color KString. On screen refresh, arc
color returns to the foreground color. Color must be a number between 0 and 9, according to the
colors selected by the user (Colors).

Writing messages

print(KString:I)
Prints the input string KString in the message area.

writeln()
Prints a newline character in the message area.

writespace()
Prints a white space in the message area.

println(KString:I)
Prints the input string plus a newline character on the std error.

Identifying enablings

identifyPotentialEnabligs(Net:I,Set:O)
Given a net Net, generates a set Set with all the transitions with at least one token in every place
of their preset.

identifyTimingEnablings(Net:I,Set:I,KString:I,Set:O,KString:O)   
Given a net Net, a set of potential enablings Set:I and the current time KString:I, generates a set
Set:O with the time enablings. KString:O contains the deadline.

Predicates

Predicates are used to test and evaluate properties.

 !
Logical negation.

 emptyset(Set:I)
True if the set Set is empty.

equal(NKobject:I,NKobject:I)
True if the two given objects have the same value.

 0<(KString:I)
True if the value in KString is greater than zero. The given value must be numeric.

 0>(KString:I)
True if the value in KString is lesser than zero. The given value must be numeric.

0<=(KString:I)
True if the value in KString is greater than or equal to zero. The given value must be numeric.

0>=(KString:I)
True if the value in KString is lesser than or equal to zero. The given value must be numeric.

 >(KString:I,KString:I)
True if the value in the first KString is greater than the one in the second. Both values must be
numeric.

 <(KString:I,KString:I)
True if the value in the first KString is lesser than the one in the second. Both values must be
numeric.

>=(KString:I,KString:I)
True if the value in the first KString is greater than or equal to the one in the second. Both
values must be numeric.

<=(KString:I,KString:I)
True if the value in the first KString is lesser than or equal to the one in the second. Both values
must be numeric.

Getting started

How to get Cabernet, system requirements to run it, and setup procedures.

Menu

How to get Cabernet Where and how can you get a free copy of Cabernet.
Requirements Minimum hardware and software requirements to use      Cabernet.
Cabernet setup Installation process.
Tutorial An example Cab Net.

How to get Cabernet

Free copies of Cabernet can be obtained through :
Prof. M. Pezze'

POLITECNICO DI MILANO

Dipartimento di Elettronica

P.za Leonardo da Vinci 32

20133, Milano, Italia

Ph: +39 (2) 2399 3523

Fax:+39 (2) 2399 3411

e-mail pezze@elet.polimi.it

For further information, please contact Prof. M.    Pezze' at the address previously given.

Requirements

To be executed, Cabernet requires:
 a C++ compiler properly installed, in order to be able to compile and execute TER

nets.
2 Mb    main memory
2 Mb free space on hard disk
386 CPU
Windows 3.1
MS-DOS 5 or later

Cabernet setup

To install Cabernet, first verify its hardware and software requirements (Requirements). Once
you have checked this, procede to execute the following steps:

Run 'Windows'

Insert    Cabernet disk    into drive A

Select menu-item 'RUN' from 'FILE' Windows menu

Type "A:\install" and press 'Enter' key

Tutorial

This is a draft of the tutorial, it does only include a few examples to be used in better
understanding the use of Cabernet.

Most Cabernet facilities not addressed in this tutorial (e.g., how to open a file how to edit a net or
how to use menus) are easily understandable by direct use.

Menu

Consumer-producer I
Power station
Tasks
Writing professors
Gas burner
Print places
Print transitions
Print places and transitions
Consumer-producer II

Consumer-producer I

File
cons.net

Tool
Editor and executor

Description
This is a simple consumer-producer net. i.e., there is a place which produces tokens which are
consumed by another places.

Usage
 Load (Open) the file cons.net. When the file is loaded into a window you can try some of the
executor facilities (Executor).

To execute the net, first compile it using the Compile option from the Executor menu (Making
an executable net). Once the net is compiled, try some of the executor options (Execution
options).

The first can be the number of firings to execute, change it and run the net.
Select the option Stop every firing in the Execution options pop up, in this way, the execution
of the net will be stopped prior to every firing. After that, try selecting the Stop every phase
option, in this manner, execution can be followed at a more detailed level (Execution options).

Select TER Execution Mode in the Execution options pop up and User choice in the Firing
time choice option in the same pop up.
By doing this, you will be asked for a time value whenever it is required by Cabernet.

Power station

File
pwrstati.net

Tool
Editor and executor

Description
Electrical station. This is a big size example developed using Cabernet, at the moment it is not
yet fully documented and available for distribution. You can open it to see the kind of problems
that can be managed with Cabernet.

Usage
 Load the file pwrstati.net into a Cabernet window (Open), and try some of the editor facilities
(Editor). For example, try zooming in and out the net (Zoom) using the respective buttons in the
toolbar.

Warning: If you want to save changes made to this or other examples, it is recommended to
make a copy of the original file.

 Tasks

File
task.net, task.grp

Tool
Analyzer

Description
This example deals with the case of three tasks sharing resources (processors, disk and printers)
and the way they use and compete for these resources.

Usage
 Load the file task.net into a cabernet window (Open), then create a new window and load the
file task.grp into that window. The last is the time reachability tree produced by Cabernet to
determine if there exists at least one feasible scheduling, in which the two tasks can be finished
within 120 time units.

The property is indicated to Cabernet as t1_T6&&t2_T6 and    Time limit is set to T0+120.

Warning: Proving some properties may take a long time. Consider this before starting properties
analysis. If you are just looking at the analyzer with no special porpouse, try properties easily
analyzable, e.g., those regarding the firing of transitions near the starting point.

Writing professors
 Files
prof.net, prof2.net, prof.grp

Tool
Analyzer

Description
This is the net corresponding to the writing professors problem presented in [BFP93], this
problem is similar to the one of the dining philosophers, the main difference is that in this case
temporal constraints are considered.

Usage
 Load the file prof.net into a Cabernet window, then create a new window load the file prof.grp
into that    window. The last is the TRT used to prove if professor 1 can get a pencil within a
period of 30 days. The property is indicated to Cabernet as PckPncl_4 which is the name of the
transition which firing is to be verified. Time limit is set to T0+60.

File prof2.net is the net which results from selecting Instantiate net while examining the final
node of the TRT (Further examination).i.e., this is a net which satisfies the condition.

Warning: Proving some properties may take a long time. Consider this before starting properties
analysis. If you are just looking at the analyzer with no special porpouse, try properties easily
analyzable, e.g., those regarding the firing of transitions near the starting point.

Gas burner
File
gas_burn.net, gas_burn.grp

Tool
Analyzer

Description
This example considers a gas burner and its possible states, in order to verify if it is safe.

Usage
 Load the file gas_burn.net into a Cabernet window (Open). Create and load the file
gas_burn.grp in another window. The last is the TRT used to verify if there is a path such that
the gas concentration reaches a value of 10 or more units, within a 60 seconds time.
If the property is not satisfied, it means the system is safe. The property is indicated as
Concentration >= 10. Time limit is set to T0+60.

Warning: Proving some properties may take a long time. Consider this before starting properties
analysis. If you are just looking at the analyzer with no special porpouse, try properties easily
analyzable, e.g., those regarding the firing of transitions near the starting point.

Print places
File
print_pl.net

Tool
Tool generator

Description
Tool created using the tool generator, this prints the names of all places in the target net.

Usage
 Load file print_pl.net into a window 1 (Open) create another window and load into the second
window 2 the same file. If you want to observe tool net evolution during execution return to
window 1. Run the tool using the Run tool option from the Tool generator menu. Place names
of the net loaded in window 2 will be printed in the message area (Graphical interface).

Reload the tool net in window 1 and try now to execute it using the Debug tool option from the
Tool generator menu. Execution will pause on every step, resume it using the GO button.

Print transitions

File
print_tr.net

Tool
Tool generator

Description   
Tool created using the tool generator, this prints the names of all transitions in the target net.

Usage
 Load file print_tr.net into a window    (Open). Run the tool using the Run tool option from the
Tool generator menu. This tool performs an operation similar to print places (Print places)
the difference is that in this case, transition names are printed out instead of place names of the
net loaded in window 2.

Reload the tool net in window 1 and try now to execute it using the Debug tool option from the
Tool generator menu. Execution will pause on every step, resume it using the GO button.

Print places and transitions

 File
print_pt.net

Tool
Tool generator

Description
Tool created using the tool generator, this prints the names of all places and transitions in the
target net. This tool calls another tools previously created with the tool generator.

 Usage
 Load file print_pt.net into window 1 (Open) switch to window 2 using the Window menu
(Window}) load another Cab net file. If you want to observe tool net evolution during execution
return to window 1. Run the tool using the Run tool option from the Tool generator menu. This
tool prints all place names and all transition names in the message area (Graphical interface).

Reload the tool net in window 1 and try now to execute it using the Debug tool option from the
Tool generator menu. Execution will pause on every step, resume it using the GO button.

Open Modify transition pop up for the transition print_places (Transitions). In the Transition
subnet field you will find a file name (print_places.net), this is the file containing the net
corresponding to a previously created tool (Print places).

Consumer-producer II
File
cons_h.trn

Tool
Hierarchy manager
Description
This is the same consumer-producer example presented earlier (Consumer-producer I), in this
case some refinement rules have been applied (Refinement tool).

Usage
 Load the file cons_h.trn into a Cabernet window (Open).
Once the file is open, try going down and up in the hierarchy using the navigation facilities
(Navigation tool). To go down one level in the hierarchy, use the Go down option in the
Hierarchy menu. Option Go up in the same menu will take you up one level in the hierarchy.

Introduction

Cabernet is a software engineering environment for the specification and analysis of real time
systems.    It provides an integrated set of    tools for specifying and analyzing specifications of
real time systems based on Petri nets augmented with data, predicates, actions and temporal
information.    Its functionalities span from well known facilities like editing, printing and saving
to innovative functionalities not yet provided by most tools available for Petri nets, e.g.
automatic proof of liveness and safety properties and generation of new tools starting from basic
functionalities.

Cabernet has been developed by researchers and students of Politecnico di Milano (the major
engineering school in Italy) and CEFRIEL (a new research laboratory partially sponsored by
Politecnico di Milano),    with the aim of understanding the benefits of formal techniques for the
development of real time systems.

Software engineering students are the natural users of Cabernet, through its use, they can learn
how to operate with Petri nets, how to use them for the development of medium to large size
software specifications,    and how to solve problems related to the development of real time
systems.    After the successful use of Cabernet within our institution for the training of few
hundreds of students, Cabernet has been distributed to other research and training institutions
(almost 30 in the first six months).    Its performances among students and its user friendliness
make us hope that Cabernet can also be used by system engineers for the specification of real
systems, at least as a prototype for evaluating the approach.

Cabernet provides a rich set of tools comprising: graphical editor, executor and animator,
analyzer, hierarchy manager and tool generator.    Additional tools are under development for
further enhance Cabernet use.

The graphical interface is particularly easy to use: all major graphical editing facilities are
provided: copy, paste, select, cut, modify, gridding, printing, zooming.    The executor and
animator allows    the evolution of specification to be studied by direct inspection.
Cabernet has shown that execution and animation can greatly help in revealing faults in the early
stage of development.    In this way such faults can be removed with great benefits on the final
software.    The same faults are very difficult to reveal and expensive to remove if left uncaught
until late in the development of the final product.   

The analyzer, which allows liveness and safety properties to be formally proven, is one of the
most innovative components of Cabernet.    It is being used to study the benefits of formal
techniques for the development of real time systems.   

The hierarchy manager drives the refinement of specifications guaranteeing    the temporal
properties already proven to be preserved in different levels of refinement. In this way, the
complexity of formally proving temporal properties using the analyzer can be reduced, since
only the first specification level has to be analyzed.   

The advanced tool generation facilities allow Cabernet basic functionalities to be assembled to

obtain new tools, as powerful as debuggers and tracers for Petri nets.    Cabernet is still evolving:
in the near future, it will comprise better tools for safety analysis, it will support the design phase
and besides it will provide facilities to customize end user interfaces according to the requests of
the end users and the needs of the specific
application.

Cabernet differs from traditional case tools for the large set of innovative functionalities provided
and the specific target: most existing case tools address a large set of graphical notations, without
formal semantics.    They usually support only few syntactic checks.    Few of them do provide
animating facilities.    Cabernet focuses on a specific model (Petri nets), formally defined, and
provides a large set of advanced functionalities, like flexible executors, analysis tools, hierarchy
manager, and tool generation facilities.    In the future Cabernet will be able to offer all its
functionalities for a large customizable set of notations.     

Cabernet differs also from Petri net based tools.    Such tools usually deal    with pure nets
(without data, predicates, actions and time); few of them deal with high level nets (typically
Colored nets); none of them deals with time formally and focus on a specific application of nets. 
Cabernet on the contrary deals with data, predicates, actions and time in an extended way and
has a specific goal, namely the support of specification of real time systems.

Background

Menu

ER Nets
Cab nets
Proving temporal properties
Hierarchical decomposition

The Cabernet formal kernel is based on a class of high-level Petri nets called ER nets. Petri nets
present several advantages:

simple formal definition, preventing ambiguous interpretations of the specifications.

intuitive graphical representation.

 operational semantics, supporting execution and simulation.

availability of analysis techniques for proving several interesting properties.

successful experience of use in many different application areas.

In addition, ER nets allow data to be described and provide facilities for representing and
analyzing temporal and functional properties.

ER Nets

ER nets and their ability to represent temporal and functional properties are described in
[GMMP91] there a sketchy and informal overview of the formalism is given and it is shown how
timing aspects can be defined in it. A variation of ER nets called Cab nets is used in the
implementation of Cabernet.

In the following sections, analysis techniques available for Cab nets and the facilities available
for handling large specifications are explained. It is assumed that the reader is familiar with the
general concepts of Petri nets. Otherwise (s)he can refer to [Mur89] for a complete overview.

ER nets are Petri nets where tokens carry information, and transitions are augmented with
predicates and actions.    Predicates select the tokens that actually enable the transitions,
according to the    information attached to the tokens.    Actions describe how the token values
produced by firings depend on the values of the tokens removed.

Time can be represented with ER nets by adding to each token a field time representing the time
at which the token has been created.    The manipulation of time fields is determined by
predicates and actions associated with the transitions (Transitions).
The value of time associated with the tokens produced by a firing    represents the firing time of
the transition.

Actions can represent any relation between the values of the tokens removed by the firings
(including the values of field time) and the values of the tokens produced by the firings. Suitable 
axioms constrain variable time in order to ensure the representation of    an intuitive concept of
time, which is non decreasing with respect to sequences of firings.

Depending on the set of axioms, two different semantics can be given: weak and strong time
semantics.    The main difference between the two semantics is the interpretation of the possible
set of firing times of a transition. i.e., the values of variable time that can be associated with the
tokens produced by a firing.    Weak time semantics interpret such set of values as the set of times
at which the event represented by the transition may occur, if it ever occurs.    Strong time
semantics interprets such set of values as the set of values within which the event represented by
the transition must occur, unless it is disabled by some other firing.

Cab nets

Cabernet uses its own notation that slightly modifies the formal kernel proposed in [GMMP91].
The formal notation of the Cabernet kernel, hereafter referred to as Cab nets, is a typed version
of ER nets: Each place is associated with a type that represents the type of the tokens that can be
produced in the place, predicates and actions refer to tokens as typed parameters.    In order to
facilitate the construction of an executor, it was decided to use C++ syntax (Syntax of properties)
to express types, variables, predicates, and actions.

Cab nets support mixed time semantics, i.e., both transitions with weak time semantics (called
weak transitions) and transitions with strong time semantics (called strong transitions) may
appear in the same net.   
Strong transitions are forced to fire within their firing interval, weak    transitions are allowed to
fire as well, but not later than the minimum among all the maximum firing times of the enabled
strong transitions, this time is the (deadline), (Executor).

Proving temporal properties

ER nets, and consequently Cab nets, can be analyzed in several different ways.    A first way is
provided by testing: the operational semantics of ER nets support a straightforward way of
executing a net by playing the token game, and a visualization of the firing occurrences provides
a simulation of the system behavior.    If time information is attached to transitions, the
simulation allows the sequence of temporal events represented by the net to be observed.    It is
therefore possible to check whether the behaviors specified by the net meet some deadlines that
the application is supposed to satisfy (Executor).

Besides execution and animation, Cabernet supports a specific analysis technique that takes into
account temporal and/or functional aspects of the ER net. Such technique, described in
[GMP94], supports the analysis of bounded invariance and bounded response properties for ER
nets. Bounded invariance properties state that certain behaviors do not arise within a given
temporal bound. Bounded response properties state that certain behaviors arise within a given
temporal bound.    Roughly speaking, bounded invariance and bounded response properties differ
from the usual safety and liveness properties because they are expressed for a given time interval
(Analyzer).

Hierarchical decomposition

Cabernet's hierarchical decomposition mechanisms are based on a rigorous formal theory that
guarantees the validity of temporal properties through different levels of abstraction: all the
temporal properties proven for specifications at the higher level are valid in the more detailed
specifications. In this it is possible to obtain the maximum advantage from the verification
mechanisms with the minimum effort. In fact, properties need to be proven only once and at the
highest abstraction level, where the amount of details is minimum, and do not need to be proven
at all levels.    Moreover, since the results of proofs at the highest abstraction level are preserved
in the whole hierarchy, the end-user is encouraged to prove properties as early as possible, thus
preventing uncaught errors to propagate down in the hierarchy.

The theory underlying the decomposition mechanisms used in Cabernet is described in [FGP93]. 
The refinement rules applied at each step guarantee the validity of all the temporal properties
through the whole refinement sequence.

Validity of temporal properties is guaranteed if the temporal behaviors of the nets are in a given
relation.    A temporal behavior of a net is defined as a sequence of set of firings on the temporal
axis: a set of firings is associated with time t in a temporal behavior if all the transitions
corresponding to the firings in the set fire at time t in the same firing sequence.    Roughly
speaking, temporal behaviors describe how an external observer that can only see the occurrence
of events, but not the net itself and its structure,
can see the dynamic evolution of the net.

A refinement satisfies the same set of temporal properties if it does present only temporal
behaviors defined in the higher-level net. This definition captures the idea that from the
validation point of view we are only interested in sequences of events how they can be
experienced by external observes and not in the way the control is implemented (Hierarchy
manager).

General

Basic information on how to use Cabernet graphical interface and general topics (storing and
retrieving files, printing the nets you work on, tailoring the interface and windows).

Menu

Graphical Interface Description of its componenets.
File Saving, restoring an printing
Option Colors, symbols and general settings.
Window Operations on the windows.

Graphical interface

The Cabernet graphical interface is composed of four main parts:

Canvas: An area where you can create and modify Cab Nets using the facilities
provided by the graphical editor (Editor).

The canvas is bigger than the work area you see. Thus, you are not restricted to use the visible
area. To move to the non visible part of the canvas, you must use the scroll bars. These are
located on the right side of the canvas and at the bottom.
Scroll bars end in buttons with the shape of an arrow. Clicking on this buttons, causes the canvas
to move in the indicated direction.

Scroll bars also have two buttons. Dragging them along the bars causes the same effect as
multiple clicks on the arrows in the indicated direction.

Message window: Located at the bottom of the Cabernet window, in this area,
messages generated by Cabernet are prompted to the user.

This window has a small button on the upper right corner, when the mouse pointer is on it takes
the shape of a cross. Clicking and dragging this button allows you to adjust the portions of the
Cabernet window used by the canvas and the message window.

Toolbar: Set of buttons located on the left of the Cabernet window, most of them
represent functions of the graphical editor (Editor); except buttons Stop and GO, which are used
by the executor (Executor) and the analyzer (Analyzer).

Main menu: Menu bar located on top of the Cabernet window, it displays all options
provided by Cabernet.

To select an option from the menu, click on it with the left mouse button. Another way to access
the main menu is pressing the Alt key, which activates it, once on the main menu, you can use
the cursor arrow keys in the numeric pad to navigate through it. A third option is using the Alt
key and the underlined letter of the desired menu item. To leave the main menu, use the ESC
key.

File

In Cabernet, nets can be stored in files. Files can be created, stored, retrieved and printed.
Options to perform these operations are located in the File menu.

Operations here described can be also applied to time reachability trees (TRT files have .grp
extension while net files use .net. Extensions use is explained later in this chapter) (Analyzer).

Menu

New How to create a new file.
Save and Save as How to save files and their modifications.
Open How to load a previously stored file.
Export How to create a windowsmetafile file
Print How to print a file.
Printer setup How to set printer options.

New

To create a new file use the option New from    the File menu, files are    created into a Windows 
(Window).

When you ask Cabernet to start a new file, this is created in a new window .

Open

Stored files can be retrieved using the Open option from the File menu. Files are placed into
windows (Window).

When you select this option a pop up window appears, in this you select the file to be opened.
This window is composed of:

Filter: A text box where you can input the path and a file name pattern which specifies
the kind of files to be shown in the file list.

By default the path is set to the directory from which Cabernet was launched and type is set to
*.net, meaning all files with extension .net no matter how the first part of their names is
composed. The latter is specified by the * character. Instead of it, you can use ? characters, in
such case, each ? stands for a single character in the name, e.g. the string ??.net stands for all
the names composed of two characters and extension .net.

When the filter is modified, Directories an Files lists are updated as necessary.

Directories: List with the names of the directories in the current path. This list must
display at least two entries; . meaning this (current)directory and .. meaning the parent directory.

Double    clicking    on    an element of the list    causes the selected    element to become the
current directory.
The same effect is achieved clicking on the Filter button while an element of this list is selected.
On directory change, the path in the Filter is modified and the Files list is updated.

Files: List (possibly empty) where the names of the files matching the filter in the current
directory are displayed.

Double clicking on a file name or clicking on the OK button while a file name is selected loads
this file in the window.

Selection: Text box where the path and file name currently selected, if any, are
displayed. You may also input here the name of the file, pressing the RET key or clicking on the
OK button causes the file to be loaded.

Cancel: Button located at the right of the window, clicking on it causes the process to be
canceled with no changes in the working window.

If you try to load a file which is not a proper Cabernet file, an error message is prompted.

Save and Save as

To store a file you can use two different options from the File menu, Save and Save as.

The Save option, saves the current net in the directory from where it was loaded with its original
name. The first time a file is saved, if you use this option, it will be placed in the directory from
where Cabernet was launched and its name will be untitl.net, which is the default name for new
files.

If you change the Net name in the Modify net pop up (Modify), the name given to the net in
that field will be used.

The Save as option allows you to give a name to the file you save. It displays a pop up window
with the following objects in it:

Filter: A text box where you can input the path and a file name pattern which specifies
the kind of files to be shown in the file list.

By default the path is set to the directory from which Cabernet was launched and type is set to
*.net, meaning all files with extension .net no matter how the first part of their names is
composed. The latter is specified by the * character. Instead of it, you can use ? characters, in
such case, each ? stands for a single character in the name, e.g. the string ??.net stands for all
the names composed of two characters and extension .net

When the filter is modified, the Directories an Files lists are updated as necessary.

Directories: List with the names of the directories in the current path. This list must
display at least two entries; .    meaning this directory and .. meaning the parent directory.

Double clicking on an element of the list causes the selected element to become the current
directory.
The same effect is achieved clicking on the Filter button while an element of this list is selected.
On directory change, the path in the Filter is modified and the Files list is updated.

Files: List (possibly empty) where the names of the files matching the filter in the current
directory are displayed.

Double clicking on a file name or clicking on the OK button while a file name is selected saves
the current window with this name.

Selection: Text box to input the name for the file to be saved. If you want the file to have
the extension .net, you must add it to the name.

Cancel: Button located at the right of the window, clicking on it causes the process to be
canceled with no changes in the working window or the existing files.

The same result as using this option is achieved by changing the Net name field in the Modify
net pop up (Modify).

On file saving, if a file with the same name already exists, it is questioned to user if   
overwritting.

Warning: To save files where you have used the refinement facilities provided by Cabernet
(Hierarchy manager), you must use the option Save from the Hierarchy menu (Navigation tool).
Otherwise, Cabernet saves only the current level as a single net losing all the information
regarding the hierarchy.

Export

File printing is performed using the Export option from the File menu, the result of the operation
is the creation of a new file. This one is a standard Windowsmetafile file which can be imported
from different applications, for example, Winword.
To give a name to these files, a pop up window similar to the one used in the Save as option is
displayed (Save and Save as). The default extension in the filter is .wmf.

Print

The Print command prints the contents of the active edit window.
The Print command is disabled if the active window can not be printed.

See also :
    Export

Printer setup

The Printer Setup command displays the Select Printer dialog box where you select which printer
you want to use for printing nets.
With the Select Printer dialog box, you can select any of the printers listed.
If you want to set options specific to the printer you chose, choose Set Up.
Some printer drivers have their own help. You will see a Help button if this is so. Choose Help
for more information about setting up your printer.

If you need more help or there is no help for the printer driver you are using, read the
Configuring a Printer section in the "Control Panel" chapter of the Microsoft Windows User's
Guide.

Printer and Port list box

The Printer and Port list box lists the Windows-installed printer drivers.

Setup dialog box

The Setup dialog box contains printer setup options. The options available depend on the
capabilities of    your printer.

Printer and Port list box

The Printer and Port list box lists the Windows-installed printer drivers.

Press Alt+Down arrow to display the list of installed printer drivers.

Setup dialog box

The Setup dialog box contains printer options that are specific to the printer that you already
chose in the Select Printer dialog box.

The Setup button brings up the Window Printer setup dialog box where you change the way
your printer is normally configured.

Option

Cabernet's graphical environment can be tailored to fit user's needs or preferences, thus, you can
adjust things as display colors, nodes' shapes, and other graphical options, using the Option
menu.

Menu

Colors How to modify display colors.
Symbols How to assign nodes' shapes.
Reduction factor How to set objects' size.
Warning level How to define which messages you want to    receive from
Cabernet.
Grid On/Off How to show or hide the grid.
Grid spacing How to adjust grid points distance
Save option How to save your preferences.
Load option How to restore your preferences.

Colors

Cabernet colors, which are specified by number from 0 to 6,    are associated to specific objects,
they are labeled by the name of such objects. e.g. color 0 (the first one) is associated to the
background, color 1(the second one) is associated to the foreground, etc.

When defining objects properties in the editor (Modify) you must refer to this colors by their
number. Although the default color for objects in the foreground is 1, using the mentioned option
you can assign to them any of the valid colors from 0 to 6.
When you select the Colors option a pop up window appears. This window has the following
components:

Scale: Graded from 0 to 15, every value has a color associated, such color can be seen in
the color display area.

OK: Button, clicking on it applies the last change and exits the window.

Cancel: Button, clicking on it cancels the last change and exits the window.

Apply: Button, clicking on it causes the last change to be applied to the current work
area.

Colors: List of the 7 available color labels. From this list you must select the label to
which you want to assign a new color. The selected label appears with a black border.

Symbols

Cabernet uses a graphic formalism with a defined set of symbols, however, these may vary for
the same notation in different application fields or due to user preferences. To solve this
(possible) problem, Cabernet allows to change the icons representing a certain kind of node.

To manage symbols Cabernet uses two tables:

User's, this consists of 10 symbols enumerated from 0 to 9. The first three are associated to
null, transition and place objects respectively. These are labeled with the name of those
objects. The rest are labeled with numbers.

Cabernet's, these are the symbols predefined in Cabernet each representedby a number as
follows:

0. Vertical empty rectangle
1. Horizontal empty rectangle
2. Empty circle
3. Empty square
4. Horizontal filled rectangle
5. Horizontal line
6. Star
7. Queue
8. Stack
9.Vertical filled rectangle

You can associate to any entry in the user's table a symbol from this table.
By default Null is associated to 0, Transition to 1 and Place to 2.

The procedure to associate to an entry in the user's table a symbol from the Cabernet's table is:

1. Select the option Symbols from the Option menu.

2. A submenu will be displayed, this contains all entries in the user's table. Select the entry you
want to modify.

3. A pop up appears, this window contains a scale graded from 0 to 9, each value represents a
symbol in Cabernet's table as described before. Select the value of the desired symbol.

When you finish, all objects represented with the modified symbol change their shape to the new
one. When modifying objects properties (Modify), you actually refer to entries in the user's table.

Reduction factor

The reduction factor sets the scale used in the display for objects.
Decreasing this value increases the size of the objects. Top and bottom values are 8 and 1
respectively. Trying to go beyond them generates an error message.

Another way to perform this operations is using the Zoom buttons in the toolbar (Zoom).

Warning level

This option sets the kind of messages you want to receive from Cabernet, i.e. you may set this to
receive only important messages or to receive every message Cabernet may display.

When you choose this option from the Option menu, a pop up window appears, this contains a
scale where you set this parameter. Although the scale is graded from 1 to 10, behavior is given
in ranges as follows:

1 to 5 every message is prompted.
6 to 9 only important messages are prompted.
10 no message is prompted.

Grid On/Off

When you select the Grid On/Off option from the Option menu, the state of the grid is switched,
i.e. if it is on turns off and viceversa.

The grid is a very useful tool to support the drawing process, where its use is highly
recommended. However, when the grid is in use, Cabernet's processes turn slow due to the
quantity of resources used by this kind of graphical facilities. It is suggested to turn the grid off
once you have finished
drawing.

Grid spacing

A pop up window appears asking for an ALIGN GRID value. This value may be an integer
between 32 and 128    which represents the separation between grid points, so giving a value of
32 results in a grid that practically covers the whole canvas and, on the other hand, giving a value
of    128 results in a grid of highly separated points. Recommended values are between 32 and
64.

Save option

Using the Save option from the Option menu allows you to save in a file the current settings for
colors and reduction factor. When you select this option from the menu, a pop up window
appears. In this window you must specify the path and file name for the options. This window is
composed as follows:

Filter: A text box where you can input the path and a file name pattern which specifies
the kind of files to be shown in the file list.

By default the path is set to the directory from which Cabernet was launched and type is set to
*.opt, meaning all files with extension .opt no matter how the first part of their names is
composed. The latter is specified by the * character. Instead of it, you can use ? characters, in
such case, each ? stands for a single character in the name, e.g. the string ??.opt stands for all
the names composed of two characters and extension .opt When the filter is modified, the
Directories an Files lists are updated as necessary.

Directories: List with the names of the directories in the current path. This list must
display at least two entries; . meaning this directory and .. meaning the parent directory.

Double clicking on an element of the list causes the selected element to become the current
directory.
The same effect is achieved clicking on the Filter button while an element of this list is selected.
On directory change, the path in the Filter is modified and the Files list is updated.

Files: List (possibly empty) where the names of the files matching the filter in the current
directory are displayed.

Double clicking on a file name or clicking on the OK button while a file name is selected saves
the current settings with this name.

Selection: Text box where you must input the name for the options file. If you want the
file to have the extension .opt, you must add it to the file name.

Cancel: Button located at the bottom of the window, clicking on it causes the process to
be canceled with no changes current settings or the existing files.

Load option

To restore settings previous saved in an option file (Save option), you must select Load option
in the Option menu. When you select this, a pop up window appears where you must specify the
option file to be restored. This window is composed as follows:

Filter: A text box where you can input the path and a file name pattern which specifies
the kind of files to be shown in the file list.

By default the path is set to the directory from which Cabernet was launched and type is set to
*.opt, meaning all files with extension .opt no matter how the first part of their names is
composed. The latter is specified by the * character. Instead of it, you can use ? characters, in
such case, each ? stands for a single character in the name, e.g. the string ??.opt stands for all
the names composed of two characters and extension .opt.

When the filter is modified, the Directories an Files lists are updated as necessary.

Directories: List with the names of the directories in the current path. This list must display
at least two entries; . meaning this directory and .. meaning the parent directory.

Double clicking on an element of the list causes the selected element to become the current
directory.
The same effect is achieved clicking on the Filter button while an element of this list is selected.
On directory change, the path in the Filter is modified and the Files list is updated.

Files: List (possibly empty) where the names of the files matching the filter in the current
directory are displayed.

Double clicking on a file name or clicking on the OK button while a file name is selected saves
the current settings with this name.

Selection: Text box where the file name and path currently selected, if any, are
displayed. You may also input here the name of the file, pressing the RET key or clicking on the
OK button causes the file to be loaded.

              Cancel: Button located at the bottom of the window, clicking on it    causes the process to
be canceled with no changes to current settings or existing files.

Window

Cabernet provides 8 working areas called windows. Each window is independent from the
others.
Each window has its own settings (Option). There is a group of    operations you can perform on
and between windows.

Menu

Windows and icons layout
Switching to a window How to navigate among windows.

Windows and icons layout

 Window menu commands allow to put windows and icons on the desktop in order to make
displaying easier.
 Tile command reduces group open windows dimensions, allowing Program Manager window to
hold them.
Cascode command cascodes group windows showing windows titles too.

 To put group windows on desktop

                          Choose Tile or Cascade commands from Window menu.

Use Arrange icons command to put icons into a group window uniformly.

Switching to a window

When you are using more than one window, you will surely need to go from one to another, this
operation is performed selecting the desired    one from the windows list in the Window menu.

Switching among windows does not affect the contents of them.

Analyzer

The analysis toolset can be used either as a stand alone tool or as part of the Cabernet
environment [BFP93]. In both cases you must provide the net to be analyzed and the
property to be verified. As result you will obtain an answer on the validity of the
property and the time reachability tree (TRT) as output.   

The analysis toolset is composed by two major parts: the net checker, which is intended
to verify nets to be time correct so they can be analyzed, and the TRT builder, which is
intended to perform the construction of the TRT required to analyze the specified
properties of the net.

Menu

Check net  Verifying net time correctness.
Time reachability tree                            Analyzing net properties.
Time reachability tree Option Inserting analysis    properties

Check net

This option of the Analysis menu, activates the net checker, which verifies if the
considered net is analyzable. To perform this operation,    it controls that for all
transitions:

Time function refers only to places belonging to the preset of the corresponding
transition,

Each preset does not comprise two or more places with the same name,

Time functions can be parsed,

Time function refers only to timestamps.

If one of these conditions is not satisfied, the net is not well defined and a warning
message is displayed. Otherwise the message Net is analyzable is displayed.

Check net also verifies    the absence of infinite long sequences in a finite time.
However, it verifies only a sufficient condition since the property is in general
undecidable.

The tool checks for the absence of cycles in the net obtained considering only
transitions that can fire with an infinitesimal delay. If the tool can prove such condition,
a message saying that the net is analyzable is shown.
Otherwise, since it is only a sufficient condition, a message saying that the net may not
be analyzable is displayed. In such case, the analysis can be carried out under user's
responsibility.

Time reachability tree

Calls the TRT builder. This builds the TRT and verifies the specified property.
The tree is shown in an available window, where it can be explored    (the generated TRT
can be stored in a file which can receive the same treatment as any other file). If there is
no available window, the tool does not allow you to proceed. When this option is
selected, it will first control the same condition controlled by the Check net option
(Check net).

To express properties, a predicate language is used. A property can be a symbolic
formula, a sequence formula or any composition of them. The syntax to be used in
properties definition is provided in a separated section (Syntax of properties).

Menu
Executing The Cabernet TRT builder.
Analyzing TRT How to perform TRT analysis in Cabernet.
Syntax of properties Syntax to be used in properties definition.

See also:
Time reachability tree Option

Executing

Attention: Before proceeding on net analysis, a dialog window, requiring the property to
be proved,    must    be    selected (Time reachability tree Option).

Choosing Build Tree menu-item starts the process. While the analysis is carried out, all
other option provided by Cabernet are disabled, except for the Stop button.

If the tool cannot solve an expression, e.g.    a non linear constraint, it asks the user for
the correct result. Analysis can be stopped by clicking on the Stop button. If this
happens, analysis will be stopped and the TRT built up to that moment is shown in a
window.

On process ending, either by normal procedure finish or by user interruption, tool shows
a message where the final (or partial, if stopped) result is displayed.

Warning: If the analyzed net is not time correct, the tool can enter in an infinite loop.

Analyzing TRT

Cabernet shows the TRT in a different window, the number of this window is displayed
in the Message window. To see the TRT, switch to its window using menu Window.

The graphical representation of the tree gives a first view on the final result. Each node
corresponds to a symbolic state of the TRT. Different symbols are used for the nodes
depending on the final status of every state.
This enhances the readability of the final result.

 Boxes represent Normal States

Circles represent Final States

Short lines indicates a subgraph which was not built.

      Empty rectangles represent deadlock states, in such states there is at least one path
that cannot be continued.

Full rectangles represent deadlock and final states.

Long lines indicates overtime states. Such states are generated by a transition
that cannot fire within the time limit.

Stars represents unexplored states. Such states have not been explored because
the analysis has been stopped, or their exploration was not necessary to reach the final
result.

Every node is given a unique name automatically generated by the tool.

Menu

Further examination    How to perform a more detailed examination of the TRT.

Further examination

To further examine the final TRT, Cabernet allows to select a node and to see how it is
composed. To do this, select (Select) the node to examine and click on the Modify
button (Modify).

A pop up window appears, this is composed by five fields:

State Name: Name of the state. This is the only editable field of the mask.

Last Fired Transition: Name of the fired transition that produced this state.

Last Firing Time: Symbolic expression representing the firing time of the last fired
transition.

Symbolic Marking: Symbolic time values associated with each token. If a place is
marked with two or more tokens, the corresponding symbols are separated by
colons.

Constraint: Formula constraining the symbolic values. It defines a relation that
must be satisfied by the tokens values in the marked places of that state. Each
symbol is implicitly constrained to be non negative.

INSTANTIATE NET: Button, clicking on it generates an instance of the net
satisfying the state described. The net is created in an available window, if there is
not such a window, a message is displayed. The instantiated net has a name
composed as follows state_of_net_name.graph, where state stands for the state
from which the net was instantiated, e.g. S2 and net_name stands for the name of
the analyzed net.

This net net can be used as any other Cab Net, you can save it and execute it. To execute
it you must first compile it (Making an executable net).

REDUCE CONSTRAINT: Button, using this you can see the constraints applied to
only one subset of the variables. Clicking on it displays a pop up window where you
must introduce the names of variable you want to analyze.

Names must be separated with ; and no spaces.

Syntax of properties

The syntax to be used on properties definition is:

 property
::= property '&&' property      (AND operator)

::= property '||' property      (OR operator)

::= ' ! ' property                                      (NOT operator)

::= '(' property      ') '

::= sequence

::= symbolic

Menu

Sequence 
Symbolic formula                       

Sequence

A sequence-formula refers to a sequence of events or states, or to any combination:

sequence
::= sequence ',' sequence            (eventually    follows)

::= sequence '-' sequence            (immediately follows)

::= event

::= state

Precedence of operators is, in order: '-' and ',' , and their associativity is from left to
right.

Menu

Events and states                      Definition of this syntactic classes.

Events and states

An event refers to a transition:

event                     
::= trans-id    (trans-id is the name of a transition in the net to be analyzed)

A state represents a marking and hence corresponds to the number of tokens in the
marked places. The number of tokens in a place at a given state is indicated with the
name of the corresponding place:

state
::= ' @{} state-def '@' '

 state-def             
::= place-id operator constant     
(place-id is the name of a place in the considered net and constant is any natural
number)

::= state-def '&&' state-def        =    and

::= state-def ' || ' state-def        =    or

The first rule for state-def constraints the number of tokens in place place-id to be lesser
or greater than, or equal or different to a constant.

The constraints on the timestamp values can refer to:

operator               
::= '<'

::= '>'     

::= '<='   

::= '>='     

::= '=='

::= '!='      (not equal)

All operators have the same precedence and their associativity is from left to right.

Symbolic formula

A symbolic formula establishes a constraint on the firing times of a single transition or
on the firing times of a pair of transitions. Constraints can refer to all the firings of a
transition (#) or to at least one firing (?). Thus, firing times of transitions are universally
or existentially quantified. Corresponding variables referring to the firing times are
directly indicated by the transition names. Formulas must be closed, i.e. all of their
variables must be quantified.

symbolic   
::=    quantifier trans-id operator    quantifier    t-time}

   

::=    quantifier    trans-id operator constant
   

::=    ' ['    quantifier    trans-id ',' quantifier trans-id '] ' ' : '    formula    ' : '

Precedence is: quantifier, operator. Their associativity is from left to right.

The first rule constraints one or all the firing times of a transition to be lesser or greater
than, or equal or different to one or all of the firing    times of another transition plus a
constant.

The second rule constraints one or all the firing times of a transition to be lesser or
greater than, or equal or different to a constant.

The third rule allows the user to write a more flexible constraint in two arguments.

In a formula, the two transitions are identified with the private identifier T#1 and T#2.
Other valid identifiers are the symbols of the initial marking.
New symbols may be used to connect two or more formulas of this type (new symbols
are implicitly existentially quantified).

Quantifiers are written as follows:
quantifier
::=    ' # '        (for each)

   

::=      '? '        (exists)

The non-terminal t-time represents directly the firing times of a transition, or the firing
times plus a constant:

 t-time       
::=      trans-id

   

::=      trans-id ' + ' constant

Menu

formula                        Definition of the syntactic class.
expr                                Definition of the syntactic class.

 formula

formula     
::=    formula `&&' formula =    AND

   

::=    formula `||' formula =    OR
   

::=    `!'      formula              =    NOT
   

::=    `(' formula `)'
   

::= expr    operator    expr

Precedence for the operators is:    `!',`&&',`||'. Their associativity is from left to right.
operator is defined in:

expr

expr    
::=    expr ' / ' expr

   

::=    expr    ' * ' expr
   

::=    expr ' - ' expr
   

::=    expr    ' + ' expr
   

::=    ' (' expr    ') '
   

::=    ' min(' argm    ') '
   

::=    ' max(' argm    ') '
   

::=    ident

::=    `T#1',` T#2'
   

::=    a number

Where ident can be any user defined identifier and    a number can be any natural
number.

Precedence of the operators is, as usual: min,max, `*', `/', `+',`-'. Their associativity is
from left to right.

Time reachability tree Option

This dialog box allows to define analysis parameters:

1. NOT EXIST: Activating this indicates the analyzer to check for the absence of the
specified property. Otherwise, it will check for the presence of a path satisfying it.

2. STOP ON DEADLOCK: Activating this option tells the tool to stop the analysis
when a deadlock is found. Otherwise, it will continue on every possible path up to the
time limit. Remember that a symbolic state represents several numeric states, this option
indicates to stop the analysis whenever one of these numeric states represents a
deadlock.

3. TER MODE: Activating this option indicates the tool to perform the analysis
considering predicates and actions. Otherwise, the analysis is performed considering
only time restrictions.

4. Strategy used: This indicates the tool the search strategy to apply when selecting the
next node during TRT analysis. Possible options are: (DEPTH FIRST, BREADTH
FIRST and USER CHOICE). Only one can be selected. If USER CHOICE is
selected, when two or more states can be explored, the tool displays the TRT segment
built up to that moment.
The user can examine each state and select the one to be analyzed.

5. Time limit: Here, the time bound for the analysis must be provided by writing a
symbolic expression. This argument is mandatory.

6. Property: The property to be proved (Syntax of properties).
This argument is mandatory.

Clicking on the OK button options are saved.

Customization of facilities

Cabernet provides tools which allow you to customize the environment so it can fit your specific
needs on notation and tools.

In these sense, two different sets of tools can be identified, the meta editor which allows notation
tailoring, and the tool generator which allows the definition of new tools from existing ones.

At the moment the meta editor is implemented and being tested, but it is not yet distributed in the
current version of Cabernet.

Menu

Meta editor How to adjust the notation to your needs.
Tool generator How to generate new tools from existing ones.

 Meta editor

The meta editor is not distributed in the current version of Cabernet.

The meta editor allows the definition of new notations based on Cabernet's formal kernel. By
doing so, the environment can be tailored to allow users who are not familiar with Petri Nets
based notations, and specially with Cab Nets, to use the environment.

End users do not need to interact with the meta editor. Definition of new notations can be let to
expert users, who will fit the tool to the needs of end users. End users are expected to be experts
in the application domain but not in the tool or its default notation. In this way we can see two
levels of    users, end users and meta editor experts.

 Tool generator

The Tool generator is not distributed in the current version of Cabernet.

Cabernet offers a set of tools to meet basic user's requirements. However, quite often users
require specific tools which are not implemented. Satisfy    all possible needs of every kind of
users is almost impossible. Most existing tools provide a fixed set of tools. Cabernet offers the
tool generator, which allows to compose tools from those already implemented.

Cabernet offers a set of elementary tools (Tool generator elementary tools) which can be
composed through a tool composition language. The composition language is provided by safe
untimed cab nets, i.e., Cab nets with no time an with at most one token in each place for each
reachable marking. Places are untyped. Tokens in the tool net are Cabernet objects and
elementary tools are actions in the transitions. The token in the initial marking of the tool must
be named Net. Such token represents the target net.

The tool composition language is complemented with a set of predicates (Predicates}), which are
placed in the Transition predicate are of the Modify transition pop up (Transitions).

Calls to user defined tools can be done using the Transition subnet field in the Modify
transition pop up (Transitions).

To execute a tool, the tool net must be loaded in buffer 1 and the target net must be loaded
(Open) into buffer 2. To start execution select option Run tool from the Tool generator menu.
In the same menu there is another option Debug tool which performs a step by step execution of
the tool, paused executions are resumed using the GO button on the toolbar.
The Stop button aborts tool execution.

To restart a stopped execution or to reexcute the tool, it is necessary to reload the tool net.

Hierarchy Manager

The hierarchical decomposition toolset comprises two basic tools: a refinement tool and a
navigation tool.    The refinement tool allows the end-user to apply the refinement rules to a High
Level Timed Petri Net (HLTPN).
It first checks the selected element for compatibility with the selected rule (e.g. it checks that the
transition sequencing rule is applied to atransition). It also checks that the net to which the rule is
applied is an Merlin and Farber net (MF net), in fact the rules described in this document and
implemented by the refinement toolset can be applied only to MF nets. It then acquires, if
needed, the new time functions from the user; it checks for their validity with respect to the time
functions associated to the transitions in the original HLTPN; it produces the time functions that
can be automatically derived, and, finally, produces the new HLTPN.

Menu

Refinement Tool                   
Navigation Tool                         

 Refinement Tool

The refinement tool is accessible via menu Refine. The end-user must first select the node
(either a transition or a place) to which the refinement rule has to be applied using button select
from the buttons on the left hand side, and then one of the refinement rules listed under menu
Refine. If the net is not an MF net or the selected rule does not apply to the    selected element
the refinement is aborted and suitable messages are popped up. Otherwise the system asks the
end-user for further details, if needed, through a suitable mask.    Items Transition Cycle, User
Choice, and Check are not implemented in the current version. Finally the new HLTPN is
shown on the canvas window. We report here, for each refinement rule, the input that the end-
user must provide, and the controls and computations performed by the tool.

Menu

Refinement Rules

 Refinement Rules

In this section, we define some refinement rules that can transform a HLTPN into an
implementation that is guaranteed to be correct by construction. An MF net is a HLTPN with
strong time semantics, where    time-functions associate each enabling tuple with an interval.   
Such interval    can be described as a pair of constant values, called a Static Firing Interval, that
represents the set of possible firing times, relative to the enabling time.

The transformation rules we identified are listed below informally. Given a net Ns the
application of a rule produces a new net Ni which is an    implementation of Ns. All rules have
been proven to satisfy the definition of implementation presented in the former section, i.e. a net
obtained by applying one of the rules presented below is guaranteed to be a correct
implementation    of the starting net.

Menu

Transition sequencing rule   
Place splitting rule                 
Place sequencing rule             
Transition splitting rule   
Firing Time reduction rule     
Iteration rule                             

 Transition sequencing rule

This refinement rule replaces a transition t with the sequence of two transitions t1, t2 and a place
p. The rule can be applied if there are no transitions conflicting with t (i.e. no transitions sharing
some place of    their preset with the places in the preset of t).

This rule allows the end-user to select the time function associated with one of the two produced
transition. The lowest and the greatest firing time    specified by the end-user must be no higher
than the lowest and the greatest firing time of the refined transition respectively. If these
requirements are    verified, the tool derives the time function of the other produced transition.
Otherwise, it refuses to apply the rule and does not generate a refined HLTPN.

Place splitting rule

Place p is replaced by two places p1 and p2 with the same preset and postset of p. If place p is
initially marked, so will be places p1 and p2. Since no transition is transformed, the event
transformation is empty.

No datum is required from the end-user. The tool automatically generates the new time functions
associated with the transitions in the postset of the refined places.

Place sequencing rule

This rule establishes that a place p and the transitions in its postset can be replaced by places p1,
p2, transition t and a set of transitions t(n+i), each    of which corresponds to a transition t(n+i) in
p.

The end-user must provide the time function associated with the newly produced transition. The
tool checks that the lowest and the greatest firing time of the new transition are not greater than
any of the lowest and greatest firing times associated with the transitions in the postset of the
refined place    respectively.    It then generates the new time functions for the transitions in the
postset of the refined place.

Transition splitting rule

This rule establishes that a    transition t is replaced by transitions t1 and t2 which have the same
preset and postset as t and the same static firing time intervals.

No datum is required from the end user. The tool automatically computes the time functions
associated with the new transitions.

Firing Time reduction rule

Given a net N the firing time reduction refinement rule consists of substituting a generic
transition t of N with a new transition t' having a more restricted static firing interval.

The end-user must provide the new time function. the toolset controls whether it is comprised in
the old time function or not. If not, the refinement step is refused as incorrect.

Iteration rule

The iteration refinement rule consists of substituting a transition t with a set of transitions and
places that represent the execution of the action modeled by transition t, as an action that may be
repeated several times in a cycle.    The structure of the resulting net guarantees an upper bound
to the number of cycles so that the total execution time is not greater than the execution time of
the original transition t.

Such rule has not been implemented yet in the current version.

 Navigation Tool

The navigation tool allows the end-user to access the different level of refinement of the
specification.    The current version supports a total order of refinement levels: only the most
refined level can be further refined.

The navigation tool can be invoked through the menu Hierarchy. It allows the visualization of
the next or the former level in the hierarchy.    Suitable messages are popped up if the end-user
attempts to go beyond the first or the last level.    Menu Hierarchy also allows a hierarchy to be
saved. It differs    from the corresponding command available under menu File because it causes 
the whole hierarchy information to be save and not only the current net.

Executor

Executor tool facilities are provided by Cabernet under the Executor menu. Once you have
drawn the net of the system you are modeling, you can execute it using them.

Menu

Making an executable net What to do prior to net execution.
Execution options What execution parameters you can set and how to do it.
Net execution How to execute a net.

Making an executable net

To execute a net, you must first compile it. Compilation is performed through the Compile
option from the Executor menu. This option compiles the specifications coded using C++ and
generates the executable code of the net.

To compile nets, you must have a C++ compiler installed and properly set in your PATH
environment variable (Getting started).

Compilation is necessary only to perform execution using the TER execution mode (Execution
options).

Net compilation generates the following files:

 A file containing the C++ source for the program that evaluates every predicate and executes
every action in the net. This file has the same name as the net with the .cpp extension

If it does not exist, a file Make.mak is created. This is the make file used to generate the
executable file. You can create your own make file or modify the one produced by Cabernet,
in order to satisfy your compilation needs or preferences. For example, adjusting compiler
name (as default, this make file invokes the C++ compiler), path    and flags or linking your
own libraries.

An executable file with the name of the net and the extension .exe. This file is generated
using the make file Make.mak.

 A file containing error messages generated during compilation. This file has the same name
as the net    but with the extension .err .

These files are located in the server directory.

Trying to execute a non compiled net produces    error message box.
If this happens, compile the net and retry the execution.

Execution options

There are    parameters which modify the way an execution is performed. Options to modify
these parameters are located in the Executor menu.

1. Run options: This option from the Executor menu causes a pop up window to be displayed.
In such window, you can define the following execution parameters.

a. Stop every firing: Activating this option, tells Cabernet to pause before every firing. When
execution is paused, a message is displayed in the Message window indicating it. To
resume execution click on the GO button (Net execution).

b. Stop every phase: Activating this option, indicates Cabernet to pause on every phase of
the execution process. Phases of the execution process are:

Selection of potential enablings, i.e. of all places in the preset of a transition that
satisfy the number of tokens required by the transition. This is the same as in common
Petri nets.

Selection of functional enabling, i.e. a subset of the previously described composed by
those places which satisfy the transition predicate.

Selection of time enabling, i.e. of another subset of the potential enablings composed
by those places which satisfy the time constraints of the transition. Functional and time
enabling selections are performed in the same phase.

Chosing enabling, in this phase, the selection of the firing enabling is performed. If
there are more than one enabling, the selection is performed according to the status of
the User choice option explained below.

Firing of the chosen transition.

Stopping every phase allows to look closely to process evolution. To resume execution
click on the GO button.

c.TER execution mode: Activating this mode, tells Cabernet to perform predicate and
action evaluation during net execution. Otherwise, this are not considered and the net is
executed as a simple Petri net playing the token game.

If execution is performed as non TER, Time choice and Execution speed options
described below are not used, since they rely on time which is not considered.

d. User choice: This option indicates Cabernet to ask for a user selection every time
multiple transitions are potentially enabled. Otherwise, the selection is performed
randomly.

e. Firing time: This option refers to the way the firing time for a transition will be selected.
There are four options, only one of them (the last one selected) remains active. Names
reflect their meaning. Random means selection will be performed randomly from the valid
time interval. Choosing Lowest or Greatest means that the firing time selected must be
the indicated bound of the time interval. User choice tells Cabernet to ask the user for a
firing time value on every firing.

2. Run speed: Selecting this option from the Executor menu, brings a pop up window, this
window has a scale control graded from 1 to 10, use it to regulate execution    Speed factor.

Speed factor 1 means the slowest execution, 10 means the fastest execution. If the current
execution speed does not satisfy your needs. Try different values to find the one that better
adjusts to your requirements and system characteristics.

Button OK applies the selected speed factor, button Cancel closes the pop up window with no
changes.

3. Number of firings: This option displays a submenu with different numbers. Selecting one of
them, sets it as the number of firings to be executed. The first option of the Executor menu,
Run n firings, displays the current value of this parameter as n.

Net execution

Once you have compiled the net (Making an executable net) and defined the execution
parameters (Execution options) you can proceed to execute it.

To execute the current net, select the Run n firings option from the Executor menu, n
corresponds to the number of firings selected in the Number of firings option (Execution
options).

The GO button in the toolbar restarts an execution stopped by Cabernet, e.g. when Stop every
firing or Stop every phase options are active.
The Stop button, cancels net execution.

Depending on execution parameters settings, different messages may appear during net
execution. The most important are:

Choose a firing time between ... This message is prompted in a pop up window, as answer
you must give a value in the specified range. Click
OK to apply the given value. This message is prompted when Firing time choice is set to
User choice.

choosing enabling ... This message is displayed in the Message window (General). When
there are more than one potentially enabled transition and the User choice option in Run
options is active, this message asks for the selection of a transition to be fired.

            Transitions are listed in a pop up window. To select a transition from the list click on it
with the mouse left button.

click GO to start next execution cycle This is displayed in the Message window on every
execution pause. This message is prompted when Stop every firing or Stop every phase
options are active.

CURRENT TIME: Message displayed in the canvas upper left corner (General) to show time
evolution during net execution.

EXECUTION INTERRUPTED: This message is prompted in the Message window after
user interruption of the execution.

Last firing time: Is displayed in the Message window after normal execution end.

number of last cycle executed: Message is prompted at the end of an execution, followed
by the number of the last execution cycle.

In addition to these messages, appropriated ones are prompted according to current execution
status, including error messages.

Editor

The Cabernet graphical editor allows to edit TER nets. TER nets can be drawn on the canvas
window using the Edit menu or the buttons on the left handside. From now on, this set of buttons
will be referred as the Toolbar.

Menu

Create a place creating places
Create a transition creating transitions
Create an arc creating arcs
Add a token creating tokens
Select selecting objects
Move moving objects
Cut , copy and paste cut, copy, paste    objects
Delete delete objects
Modify modify objects
Gridding using a grid to align objects
Zoom zooming the view

Create a place

To create a place, you must first activate the Place button in the toolbar, this is the third one in
the row, its icon is a circle with an arrow going into it and another going out from it.

If this button is the active one, whenever the mouse pointer enters the canvas, the pointer will
take the shape of a pencil, thus meaning it is posible to draw something. In this case, it is
possible to draw a place.

When the place has just been created, its properties are set to default values as follows:

Place Name value is composed by the letter P and a consecutive number, names are P1, for
the first place created, P2 for the second and so on. The name appears on place's upper left
side.

   
Place Subnet has no value.

Place Size is 100.

Place Color is set to 1.

Place shape is set to the default value, initialy this is set to 2, which corresponds to a circle,
but you can change it using the option Symbols from the Option menu.

Type is set to timed_NKvoid.

To modify this settings, you must follow the procedure described in section Modify. In that
section you will also find information on the meaning of this properties.

Upon its creation, as it must be expected, the place has no tokens associated to it. You can define
tokens using the procedure described in section Add a Token .

Create a transition

To create a transition, you must first activate the Transition button in the toolbar, this button has
the icon of a rectangle with two arrows, one going into it and another going out from it.

While this button remains active, when the mouse pointer enters the canvas it will take the shape
of a pencil, thus meaning it is posible to draw something. In this case, it is possible to draw a
transition.

Initially, when the transition has just been created, its properties are set to default values as
follows:

Transition Name value is composed by the letter T and a consecutive number, i.e.    names are
T1, for the first place created, T2 for the second and so on. The name appears on transition's
upper left side.
 Transition Subnet has no value.
 Transition Size is 100 .
 Transition Semantics is set to Strong.
Transition Color is set to 1.
Transition shape is set to the default value, initialy this is set to 1, which corresponds to a
horizontal rectangle (not filled). You can change it using the option Symbols from the Option
menu. You can create vertical transitons (field Transition Shape set to 0) if you keep the SFT
key pressed when you create the transition.
 Transition Predicate is set to TRUE.
 Transition Action has no action defined, this is indicated by a ";".
 Static minimum and maximum times are both set to enab, being this
 value the enabling time of the transition.

To modify this settings, you must follow the procedure described in section Modify. This section
also offers more information on the meaning of this values.

Create an arc

Before creating an arc, you must activate the arc button in the toolbar, this is the fifth one on the
row, its icon is a rounded arrow. If    this button is the active one, whenever the mouse pointer
enters the canvas    the pointer will take the shape of a pencil, thus meaning it is posible to draw
something. In this case, it is possible to draw an arc.

To create an arc, you must first select the initial node (place or transition) and the ending node,
nodes selection is made by clicking on them.    Arcs can only go from transitions to places or
from places to transitions, as it should be expected.

Once you have clicked on a node, no arc is drawn until you click on another valid node, e.g.    if
you click on transition T1, then on another transition T2 and finally on a place P1, an arc is
drawn from T1 to P1. In this case, clicking on T2 (which is not a valid node) had no effect.

Following the procedure described above, arcs are created as straight lines. However, you may
want to draw curved arcs. To create curved arcs (with max 4 vertices), click on the first node,
then click on the canvas in the place you want to position the curve. Then, click in the final node,
this will create a curved arc.

When the arc has just been drawn, its properties are set to default values as follows:

Arc Name value is composed by the letter A and a consecutive number, i.e. names are A1, for
the first place created, A2 for the second and so on. Arc names are not displayed.
Arc Color is set by default to 1.

To modify this settings, you must follow the procedure described in section Modify.

Add a token

To add a token, you must first activate the Token button, this one is the sixth on the row, its icon
is a circle with a smaller filled circle inside and an arrow going into it.

If this button is the active one, whenever the mouse pointer enters the canvas the pointer will
take the shape of filled circle, thus meaning it is posible to draw something. In this case, it is
possible to add (draw) a token.

Tokens are created into places. The first time a token is created into a place, the symbol
representing tokens appears within that place, this symbol is a small filled circle. After the first
one, whenever a token is created, the symbol in the container place remains the same and a
number appears above of it, this number is the number of tokens contained in such place.

Upon their creation, tokens have their properties set to default values as follows:

Environment Name, this value is composed by the letters Tk and a consecutive number, i.e.
names are Tk1, for the first token created, Tk2 for the second one and so on.
Environment Time is set to 0.
Symbolic Time is given the value T0.
Environment Value is empty.

To modify this values you must follow the procedure described in section Modify.

Select

To select an object the Select button must be activated. This is the one on the top of the toolbar.
Its icon is an arrow. Selected objects are highlighted. Once you have selected the object, you can
perform the following operations on it: Modify, Copy, Cut, Paste or just Move it .

To select a single object in the canvas, you can do one of the following:

Once activated the Select button, position the mouse pointer on the object you want to select
and click with the mouse left button.
To select an object without activating the Select button, click on it with the mouse right
button while the Ctrl key is pressed.

To select groups of objects, you have to follow one of the procedures described below:

1. While the Select button is active, position the mouse pointer near (not on) the first object you
want to select. Then, while you keep the left mouse button pressed, move the mouse, at this
moment a square appears. Drag over the desired objects, so they all are surrounded by the
square. Release the mouse button, now all these objects are selected.

2. If the Select button is active, click the left mouse button while the mouse pointer is on the
first object you want to select, then while you keep the SFT key pressed, click on every
object you want to select.

3. As noticed, the previous methods require the Select button to be active. To select multiple
objects without activating the Select button, follow the same procedures using the right
mouse button and Ctrl key instead of the left one. This is some sort of    shortcut.

When there is a group of selected objects; Clicking on one of them with the left mouse button if
the Select button is active, or with the right one and Ctrl key without activating the Select
button, while you keep the    SFT    key pressed, causes the object to be de-selected.

Move

There are various ways to move an object in the editing area. These are described below:

To use the Move button you must first acitivate it, this is the one located on the upper side of the
toolbar. Its icon is a hand. When this button is active and the mouse pointer enters the editing
area, the pointer takes the shape of a hand.

1. With the Move button active. Position the mouse pointer on the object you want to move then
press the left mouse button and drag it to the new position, while you keep the mouse button
pressed. Release the mouse button and the object appears on the indicated position. These
method is applicable only to move single objects in the editing area.

2. Another way to move a single object is the following: in this case it does not matter which
button is active in the toolbar. Position the mouse pointer on the object you want to move,
then press the right mouse button and, while keeping this button pressed, drag to the new
position of the object. Release the mouse button and the object will appear on the indicated
position.

            When multiple objects are selected, any of the two methods mentioned above affects only
the object on which they are applied directly. The rest of the objects remain as they were
before the operation.

3.    To move sets of objects, first select them and then apply any of the two methods mentioned
above while you keep the SFT key pressed.

Cut    copy and paste

When an object (or a set of them) is Cutted, they are placed in memory so if you wish to reinsert
(paste) it (them) in the canvas you can do it. If you want to delete an object permanently from
your current work, select it and click on the Delete button, this button is the one with the scissors
icon. Before doing so, be sure you will not want to recover the deleted object(s), because you
will not be able to do so.

To cut an object or a set of objects in the editing area, first select the object(s) to be cutted, and
then do one of the following: Select the option Cut from the Edit menu .

To copy an object or a set of objects in the editing area, first select the object(s) to be copied, and
then do one of the following: Select the option Copy from the Edit menu. The object(s) will be
copied in the Windows Clipboard too.

To paste an object or set of objects that has been previously cutted, select the Paste option   
from the Edit menu.

Delete

To delete an object or a set of objects in the editing area, first select the object(s) to be deleted,
and then select the option Delete from the Edit menu .

See also:
Cut, copy and paste

Modify

There are different ways to modify an object. They are described in the following paragraphs.
When you want to modify an object, you will follow one of the procedures described below.

1. To modify an object in the editing area, first select it. Then, click on the Modify button, this
is the tenth    in the toolbar.

2. Another option is to select the object and then choose the option Modify from the menu Edit.

3. If the Select button is active, double click on the object with the left mouse button.

Each kind of object has a different set of properties and a different dialog box to modify them.
These are described in the following subsections:

Menu

Places modifying places
Transitions modifying transitions
Arc modifying arcs
Tokens modifying tokens

Places

When you ask to modify a place, the following data appears in a pop up window where it can be
edited, following its name we give a brief description of what each place property means.

Place Name: This is the name given to the current place. Place names syntax is the same as
for C++ identifiers.
Place Size: This value specifies the size of the icon that represents the current place.
Place Color: This value specifies the color asigned to the place. Using colors makes possible
to remark an important place or group of them.
Place Shape: This value defines the shape of the icon representing the current place. Allowed
values are from 0 to 9 each representing a different shape. Default values correspond to
standard shapes, i.e. circles for places, rectangles for transitions and arrows for arcs.
Place Type: In this field the type of the objects (tokens) the place can contain is specified.
Each type must be defined as a C++ class. New types can be defined using the option Modify
net from the edit menu.
Tokens (button): This button allows to modify tokens contained in the current place .

Transitions

When you ask to modify a transition, its properties and their values aredisplayed in a pop up
window where they can be edited. This properties and their meaning are described below.

Transition name: This is the name given to the current transition. Transition names syntax is
the same as for C++ identifiers.
Semantics: This can take only one of two values, Weak and Strong. Which refer to the time
semantics of the transition.
Transition Size: This value specifies the size of the icon that    represents the current
transition.
Transition Color: This value specifies the color asigned to the transition, using colors makes
possible to remark an important transition or group of them.
Trans. Shape: This value defines the shape of the icon representing the current transition.
Allowed values are from 0 to 9, each one representing a different shape.
Transition Predicate: In this place is where the predicate which must be satisfied to enable the
transition is written.
Transition Action: In this place, the actions to be taken upon transition's firing must be
specified.
Static min. time: Is the lower bound for the time interval within which the transition must (or
may, depending on its time semantics) fire.
Static max. time: Is the upper bound for the time interval within which the transition must (or
may, depending on its time semantics) fire.

Arcs

When you ask to modify an arc, its properties and their values are displayed in a pop up window
where they can be edited. Arcs have only two editable properties:

Arc Name: This is the name given to the current arc, its syntax is the same as for C++
identifiers.
Arc Color: This value specifies the color asigned to the current arc, using colors makes
possible to remark an important arc or group of them.

Tokens

In the window where Places properties can be edited, you will find a button named tokens,
clicking on it, displays the window where you can modify the properties of the tokens contained
in such place. The list of these tokens is displayed at the left side of the window. Clicking on the
name of one of    them shows its current values and allows you to modify them.   

A brief description of these properties is given below.

Environment Name: This value is the name given to the token.
Environment Time: This represents the current environment time for the selected token. This
time is used by the Executor.
Symbolic Time: Describes the symbolic time assigned at the current    moment to the token.
This name is used by the Analyzer.
Environment Value: Displays the current value of the token within the    environment.

Gridding

The grid is a tool which serves as a guide that helps you to align and order objects in the canvas.

The grid can be activated and deactivated using the option Grid On/Off from the Option menu.
Upon grid activation menu-item, there is another menu-item Grid spacing to estabilish the
distance between two grid point.

Zoom

Through the zoom options, you can magnify or reduce the net currently displayed in the canvas
in order to see the whole net or to look at the details of a part of it.

The zoom buttons are the ones located at the bottom of the toolbar. The last one on the row   
reduces    (zooms out) the contents of the canvas, the other one magnifies it (zooms in).

